30.1.18

Triângulo isósceles: invariância da soma das distâncias do lados iguais a pontos da base.



TEOREMA: Se por um ponto qualquer $\;D,\;$ da base $\;BC\;$ de um triângulo $\;ABC\;$ isósceles, tirarmos perpendiculares $\;DE, \; DF\;$ respetivamente aos lados $\;AC\;$ e $\;AB\;$ iguais, então a soma $\;DE+DF\;$ é sempre a mesma qualquer que seja a posição de $\;D.\;.$
PROBLEMA: Provar que é invariante a soma das distâncias $\;DE+DF\;$ de um ponto qualquer $\;D\;$ de $\;BC\;$ aos lados $\;AC\;$ e $\;AB\;$ .


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 20. 20. La somme des perpendiculaires abaissées d'un point quelconque de la base d'un triangle isocèle sur les côtés égaux, quelconque est une quantité constante.

Todos os passos da construção e demonstração em tudo são análogos aos usados na anterior entrada

$\;\fbox{n=1}:\;$ Apresenta-se um triângulo isósceles $\;ABC\;$ de base $\;BC\;$ e sobre esta um ponto $\;D\;$ que pode tomar a posição de qualquer dos seus pontos. E mostram-se também os pontos $\;E, \;F\;$ pés das perpendiculares a $\;AC,\; AB\;$ por $\;D\;$ tiradas.Também se mostram os segmentos (distâncias do problema) das perpendiculares $\;[DE],\; [DF]$

$\;\fbox{n=2}:\;$ Para verificar a invariância da soma, bastará prolongar uma das perpendiculares, no caso da nossa construção prolongamos o segmento $\;[DF]\;$ acrescentando $\;[DN],\;$ em que $\;N\;$ é ponto de intersecção da recta $\;DF\;$ com uma paralela a $\;AC\;$ tirada por $\;C\;$ (ou o que é o mesmo com uma perpendiculara a $\;DF\;$ tirada por $\;C.$)
Ficamos assim com três triângulos retângulos semelhantes $\;DBF, \;CDN, \;DCE:\;$
  • $\; \angle F\hat{B}D = \angle D\hat{C}E\;$ ângulos da base do triângulo $\;ABC\;$ isósceles;
  • $\; \angle D\hat{F}B = \angle C\hat{E}D= 1\;$ reto, por construção (dados da hipótese);
  • e, em consequência, $\; \angle B\hat{D}F= \angle E\hat{D}C\;$;
  • $\;\angle N\hat{C}D= \angle F\hat{B}D \;$ por terem os lados inversamente paralelos;
  • e finalmente $\; \angle B\hat{D}F = \angle C\hat{D}N \;$ são iguais por serem verticalmente opostos.
  • Podemos agora afirmar que, mais do que semelhantes, são iguais os triângulos $\;CED, \;CDN\;$ por terem os três ângulos iguais e a hipotenusa $\;CD\;$ comum.
  • Por isso, $\;DE = DN\;$ e $\;FD+DN= FD+DE = FN\;$ que os valores referidos nos textos abaixo da construção sugerem que os diversos valores de $\;DE\;$ e $\;DF\;$ quando $\;D\;$ se desloca sobre a base $\;BC\;$ têm uma soma constante.




31 janeiro 2018, Criado com GeoGebra



$\;\fbox{n=3}:\;$ Apresenta-se neste passo o segmento $\;[CL]\;$ da paralela a $\;FN\;$ tirada por $\;C\;$ (ou da perpendicular a $\;AB\;$ tirada por $\;C\;$ que é uma das duas alturas iguais do triângulo $\;ABC\;$ tiradas pelos vértices opostos $\;C\;$ e $\;B\;$ opostos aos lados iguais $\;AB\;$ e $\;AC,\;$ que não sofre qualquer variação quando $\;D\;$ muda de posição e tem comprimento igual a $\;\overline{FN},\;$ ou seja, à soma das duas distâncias dos lados iguais do triângulo isósceles a cada ponto da base. Fica assim demonstrado que essa soma é constante.


Quando $\;D\;$ se encontra em $\;C\;$o retângulo $\;CLFN\;$ tem área $\; CL\times FF\;$ nula. Quando $\;D\;$ se encontra em $\;B\;$o retângulo $\;CLFN\;$ tem área $\; CL\times LB\;$ máxima

Quanto ao perímetro, como uma das dimensões do retângulo é sempre a mesma, o perimetro é um mínimo $\;CL\;$ quando $\;D\;$ toma a posição de $\;C\;$ e é máximo $\;2(CL+LB)\;$ quando $\;D\;$ toma a posição de $\;B\;$

22.1.18

Paralelogramos inscritos num triângulo isósceles com um perímetro comum.



TEOREMA:Por um ponto qualquer $\;D,\;$ da base $\;BC\;$ de um triângulo $\;ABC\;$ isósceles, tiram-se paralelas aos lados iguais $\;AB, \;AC\,$ do triângulo que intersetam os lados $\;AC, \;AB \;$ em $\;E\;$ e em $\;F\;$ respetivamente. Para cada $\;D\;$ de $\;]BC[\;$ há um paralelogramo $\;[DEAF].\;$ Prova-se que os paralelogramos $\;[DEAF]:\;D \in ]BC[\;$ são isoperimétricos.
PROBLEMA: Provar que a soma dos comprimentos dos lados de todos os paralelogramos é invariante.


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 19. Par un point quelconque de la base d'un triangle isocèle on mène des parallèles aux côtés égaux; prouver qye le parallélogramme ainsi formé a un périmètre constant.

Considera-se que na resolução deste problema de demonstração se recorre ao método geral de análise já que se aceita que a afirmação é verdadeira, o que é o mesmo que supor ter o problema resolvido. Os primeiros três passos da construção abaixo dão toos os elementos para a demonstração do teorema.

$\;\fbox{n=1}:\;$ Apresenta-se um triângulo isósceles $\;ABC\;$ de base $\;BC\;$ e sobre esta um ponto $\;D\;$ que pode tomar a posição de qualquer dos seus pontos. E mostram-se também os pontos $\;E, \;F\;$ vértices do paralelogramo $\;DEAF\;$ conforme dados da hipótese do teorema.

$\;\fbox{n=2}:\;$ Claro que lados opostos do paralelogramo têm comprimento igual (segmentos paralelos entre paralelas são iguais) $\;AE=FD, \;AF=DE\;$ e, por isso, o perímetro de $\;DEAF\;$ é igual ao dobro da soma de dois dos seus lados consecutivos: $\;DE+EA+AF+FD= 2 (DE+FD). \;$ Se $\;DE+FD\;$ não depender da posição de $\;D\;$ em $\;BC\;$, o perímetro de $\;DEAF\;$ não varia quando a posição de $\;D\;$ varia. Desloque $\;D\;$ para confirmar isso (conjetura) - nos textos se vê como variam os comprimentos $\;DE\;$ e $\;FD\;$ tendo soma constante.

$\;\fbox{n=3}:\;$ Claro que ângulos de lados paralelos são iguais em amplitude, por exemplo, $\;\angle B\hat{A}C= \angle D\hat{E}C =\angle B\hat{E}D, \; $ $\angle B\hat{C}A= \angle D\hat{C}E = \angle B\hat{D}F\;$ e, como é óbvio, por ser $\;\angle A\hat{B}C = \angle B\hat{C}A\;$ do triângulo isósceles $\;ABC,\;$ os triângulos $\;BDF\;$ e $\;DCE,\;$ de onde se retira que $\;DE=EC\;$ ou seja $\;\overline{FD}+\overline{ED} = \overline{FD}+\overline{EC}=\overline{AE}+\overline{ED}\;$
Prolongando $\;FD\;$ e tirando por $C\;$ a paralela a $\;AB\;$ obtemos um paralelogramo $\;FGCA\;$ que para qualquer posição de $\;D\;$ (incluindo $\;B\;$ e $\;C\;$) $\;FD+DE =FG= AC\;$ que não depende da posição de $\;D\;$

22 janeiro 2018, Criado com GeoGebra




Aproveitamos a oportunidade para lembrar um OUTRO PROBLEMA (clássico), usando a mesma construção:
Dos paralelogramos $\;DEAF\;$ isoperimétricos, qual deles tem área máxima?
De outro modo, qual a posição de $\;D\;$ para a qual $\;DEAF\;$ tem área máxima?
Ou ainda, de entre os números com uma certa soma constante, quais deles têm um produto máximo?
$\;\fbox{n=4}:\;$ Mostra-se a área de $\;DEAF\;$ variável com $\;D\;$ como se pode ver.
$\;\fbox{n=5}:\;$ Quando a posição de $\;D\;$ varia em $\;BC\;$, a área de $\;DEAF\;$ como função de $\;BD\;$ é representada por uma curva que se mostra neste passo… □

15.1.18

Envolvente. Problema recorrrendo a lugar geométrico (20)


Notas prévias:

O lugar geométrico dos pontos a uma distância $\;r\;$ de um ponto $\;O\;$ dado é uma circunferência centrada em $\;O\;$ e de raio $\;r\;$ e uma circunferência centrada em $\;O\;$ e de raio $\;r\;$ é o lugar geométrico dos pontos a uma distância $\;r\;$ do ponto $\;O.\;$
A distância de um dado ponto O a uma reta a é igual ao comprimento do segmento da reta perpendicular tirada por $\;O\;$ a $\;a\;$ de extremos $\;O\;$ e $\;A,\;$ pé dessa perpendicular a $\;a;\;$ e, por isso, podemos dizer que sendo o
lugar geométrico dos pontos dos pés das perpendiculares a retas equidistantes de um ponto $\;O\;$ é uma circunferência ou mesmo que a circunferência é o lugar geométrico das retas equidistantes de $\;O\;$ tomando por cada reta o seu ponto de tangência ou dizendo que a circunferência é envolvente (que envolve ou é envolvida) das retas equidistantes do seu centro.


Problema: Para um dado ângulo $\;\angle B\hat{A}C, \;$ determinar a envolvente da base $\;BC\;$ de um triângulo $\;[BAC]\;$ cujo perímetro é constante.

F.G.-M. Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 123. Quelle est l'envelope de la base BC d'un triangle BAC dont le périmètre est constant, et dont l'angle A est donné de grandeur et de position?

A seguir encontra-se uma ilustração dinâmica dos dados do enunciado deste problema, bem como dos auxiliares passos de uma construção em apoio da demonstração.
  1. Apresenta-se ao cimo da janela um segmento de reta de comprimento igual ao perímetro $\;2p\;$ constante de um triângulo $\;ABC\;$ partido em 3 segmentos, da esquerda para a direita, $\;AB, \;BC, \;CA.\;$ e também em duas partes iguais a $\;p,\;$ $\;AM, \;MA\;$.
    Logo abaixo na janela, temos um exemplar de triângulo com um ângulo $\;Â\;$ dado (no caso, de amplitude 46°) e lados com os comprimentos referidos acima ou seja com o perímetro constante considerado (no caso, 7).
    Considerámos, no segmento original, o ponto $\;B\;$ a tomar posições entre $\;A\;$ e $\;M,\;$ já que $\;AB < BC+CA\;$ (desigualdade triangular). Se deslocar $\;B\;$ pelas posições dos pontos de $\;AM,\;$ obtemos todos os representantes dos triângulos de perímetro 7 e com ãngulo 46° em $\;A.\;$
    Os lados $\;AB\;$ e $\;AC\;$ são segmentos das retas definidas por cada um dos pares de pontos $\;(A,\; B),\; (A, \;C).\;$ Já vimos que não há triângulo quando $\;B=A\;$ ou quando $\;B=M\;$


  2. 14 janeiro 2018, Criado com GeoGebra



  3. As posições extremas de $\;B:\; B=M\;$ e $\;B=A \;$ levam-nos a aos pontos de intersecção de $\;AB\;$ e $\;AC\;$ com a circunferência $(A, \;p)$ sendo $\;p=AM\;$ semiperímetro de triângulos com um ângulo de 46°
  4. $\;AD=AE=p,\;$ ou seja $\;ADE\;$ é um triângulo isósceles de base $\;DE.\;$ com ângulo $\;Â\;$ dado (46°)
    $\;AD+AE = 2p = AB+BC+CA\;$
  5. Consideremos a circunferência de centro em $\;H\;$ tangente em $\;D\;$ e $\;E\;$ às retas $\;AB\;$ e $\;AC\;$ respetivamente:
    • $\;DH \perp AB, \;HE \perp AC,\;$
    • Por ser $\; DH=HE, \; \;\; H\;$ está na bissetriz do ângulo $\;Â.\;$ Assim, esta circunferência $\;(H, HE)\;$ é uma ex-inscrita de qualquer dos triângulos $\;ABC\;$ e portanto tangente a $\;BC.\;$
  6. As bases $\;BC\;$ são tangentes ao arco aberto da circunferência $\;(H, \;HT):\; ]\widehat{DTE}[ \;$ a vermelho (os extremos a castanho $\;D, \;E\;$ não são pontos da envolvente dos segmentos $\;BC\;$ considerados).