29.11.17

Áreas. Problemas de Optimização(7)


Enunciado do problema:
As diagonais de um trapézio retângulo têm comprimentos $\;a\;$ e $\;b\;$ sendo $\;b < a.\;$
Para que comprimento $\;x\;$ do lado perpendicular aos dois lados paralelos do trapézio terá este área máxima?

Para a construção da figura abaixo precisámos dos segmentos $\;a, \;b\;$ cujos comprimentos de medidas fixa correspondem às diagonais $\;a=BD\;$ e $\;b=AC\;$ do trapézio, para além de um ponto $\;A\;$ de partida.

  1. Tomados os comprimentos $\;a, \;b\;$ das diagonais e um ponto $\;A, \;$ sobre uma reta horizontal a passar por $\;A,\;$ tomámos um ponto $\;B\;$ variável em $\;\dot{A}B.\;$ Veremos depois que outras restrições tolherão os passos deste ponto.
  2. Determinamos os pontos $\;C, \;D\;$ nas intersecções de $\;(A,\; b)\;$ e $\;(B,\; a)\;$ com as perpendiculares a $\;AB\;$ tiradas por $\;B\;$ e por $\;A,\;$ respetivamente, ambos num mesmo dos semi-planos determinados por $\;AB.\;$

  3. Dos triângulos retângulos $\;ABD\;$ e $\;ABC\;$ que, em comum, têm o lado $\;AB\;$ de comprimento $\;x\;$ (cateto de um e de outro) $\;a= BD\;$ hipotenusa do primeiro deles e $\;b=AC\;$ hipotenusa do segundo.
    Sabemos
    • $\;a > b > x\;$ nova restrição para os valores de $\;x\;$ que interssama oa problema do trapézio.
    • $\;AD^2 =a^2-x^2 \Rightarrow AD= \sqrt{a^2-x^2}$
      $\;BC^2= b^2-x^2 \Rightarrow AD= \sqrt{b^2-x^2}$

      e a área $\;y\;$ do trapézio $\;ABCD\;$ que é igual ao produto da semi-soma dos lados paralelos pela altura relativa a esses lados $$ \displaystyle \frac{AD + BC}{2} \times AB $$ e pode ser expressa em função de $\;x :\;$ $$y= \frac{\sqrt{a^2-x^2}+ \sqrt{b^2-x^2}}{2} \times x$$
  4. No canto superior direito da construção apresentamos o conjunto dos pontos $\;(x, \;y)\;$ do gráfico da função $\;y = f(x)\;$ que esclarece o modo como varia a área $\;y\;$ do trapézio em estudo com a variação da altura do trapézio $\;x\;$ relativa aos seus lados paralelos.

27 novembro 2017, Criado com GeoGebra

  • No canto superior direito da construção apresentamos o conjunto dos pontos $\;(x, \;y)\;$ do gráfico da função $\;y = f(x)\;$ que esclarece o modo como varia a área $\;y\;$ do trapézio em estudo com a variação da altura do trapézio $\;x\;$ relativa aos seus lados paralelos.
  • Sem perdermos de vista que $\;0 < x < b < a,\;$ olhemos para a derivada de $\;y=fx):\;$ $$\displaystyle \frac{dy}{dx} =\frac{\sqrt{a^2-x^2}+ \sqrt{b^2-x^2}}{2} - \frac{x^2} {2} \left(\frac{1}{\sqrt{a^2-x^2}} +\frac{1}{\sqrt{b^2-x^2}}\right)= \frac{\sqrt{a^2-x^2}+ \sqrt{b^2-x^2}}{2} - \frac{x^2}{2}.\frac{\sqrt{b^2-x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2-x^2} . \sqrt{b^2-x^2}}= $$
    $$= \displaystyle \frac{\sqrt{a^2-x^2}\sqrt{b^2-x^2}(\sqrt{a^2-x^2}+\sqrt{b2-x^2})-x^2(\sqrt{a^2-x^2} +2x^2\sqrt{b^2-x^2})}{2\sqrt{a^2-x^2} .\sqrt{b^2-x^2}}= \;\;\;\;\;\;\;\; \;\;\; \;\;\;\;\;\;\;\; \;\;\; \;\;\;\;\;\;\;\; \;\;\;\;\; \;\;\;$$
    $$=\frac{(\sqrt{a^2-x^2} +\sqrt{b^2-x^2}) (\sqrt{a^2-x^2}\sqrt{b^2-x^2} -x^2)}{2\sqrt{a^2-x^2} .\sqrt{b^2-x^2}}\;\; \;\;\; \;\;\;\;\;\;\;\; \;\;\; \;\;\;\;\;\;\;\; \;\;\; \;\;\;\;\;\;\;\; \;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\; \;\;\;\;\;\;$$ que só se anula quando $$\sqrt{a^2-x^2}= -\sqrt{b^2-x^2} \;\;\;\;\;\vee \;\;\;\;\; x^2 = \sqrt{a^2-x^2} \;\;\sqrt{b^2 - x^2}$$ Como a primeira condição de anulamento nunca se verifica para as condições do problema, resta-nos $$y’_x = 0 \Leftarrow x^2 = \sqrt{(a^2-x^2)(b^2 - x^2)} \Leftarrow x^4 =(a^2-x^2)(b^2-x^2) \Leftarrow x^4 = x^4-(a^2+b^2)x^2 + a^2b^2 \Leftarrow x^2= \frac{a^2b^2}{a^2+b^2}$$ Concluindo $$ x=\frac{ab}{\sqrt{a^2+b^2}} \Rightarrow y’_x=0$$ De outro modo $$y’_x = 0 \Leftrightarrow x^2= \overline{AD} \times \overline{BC} \Leftrightarrow x= \sqrt{\;\overline{AD} \times \overline{BC} \;}$$
    No caso da nossa figura ou construção, em que tomamos $\;a=4\;$ e $\;b=2\;$, o máximo dos valores $$y= \frac{\sqrt{16-x^2}+ \sqrt{4-x^2}}{2} \times x$$ das áreas dos trapézios é 4 atingido para $\;\overline{AB}=x=\displaystyle \frac{4}{\sqrt{5}}\;$ □


    Sangaku Optimization Problems:
    (All animations written by David Schultz in MAPLE (TM). Source code available upon request: davvu41111@mesacc.edu)
    Kazen Yamamoto, Hiromu Hasegawa. (1809)
    Problem Statement: The diagonals of a trapezoid are fixed with lengths a and b with b < a. What is the horizontal length, x, which produces the trapezoid of maximal area?
    Sanpõ-Jojutsu, pg. 151.

    21.11.17

    Áreas. Problemas de Optimização(6)

    Problemas Sangaku de Optimização

    Enunciado do problema (interpretado):
    Considere retângulos de papel (de cantos (vértices)$\;A,\;E,\;F,\;D\;$) que têm a mesma altura ($\;AD=EF\;$) como a maior das suas dimensões. (No caso da nossa figura $\;AE < AD).\;$
    Imagine que dobra cada um dos retângulos de papel retangulares de tal modo que um dos vértices vá sobrepor-se ao vértice oposto (por exemplo $\;A \longrightarrow A’=F\;$ como no caso da nossa figura).
    Para qual dos retângulos de papel $\;AEFD\;$ é máxima a área do triângulo $\;\;[DHF]\;$ vermelho?

    Na figura abaixo apresentam-se inicialmente as etapas da construção que ilustra o enunciado do problema, a saber:

    1. Sendo $\;\overline{AD}\;$ invariante, no caso da nossa figura está fixado em $\;4,\;$ a outra dimensão $\;\overline{AE}\;$ variável, pode tomar qualquer valor positivo menor que o de$\; \overline{AD}.\;$ Por isso, na figura consideramos $\;E\;$ um ponto móvel em $\;[AB]\;$
    2. 20 novembro 2017, Criado com GeoGebra

    3. Mostramos a diagonal $\;AF\;$ porque vamos dobrar o papel levando $\;A\;$ a sobrepor-se a $\;F,\;$ ou seja $\;A \mapsto A’ \equiv F\;$ por reflexão relativa ao ponto $\;M\;$ médio de $\;AF \;$ e a dobra, que é o conjunto dos pontos do retângulo que se mantêm nas mesmas posições, será uma perpendicular a $\;AF\;$ tirada por $\;M\;$ a intersetar $\;AD\;$ em $\;H\;$ e $\;EF\;$ em $\;G. \;$ A dobra é eixo da reflexão para a qual $$M \mapsto M, \;\;G \mapsto G, \; \;H \mapsto H, \;\;A \mapsto F$$ e, em consequência, $\;HA \rightarrow HF \;$ e $\;\overline{HA}= \overline{HF}.\;$
    4. Mostramos o ponto $\;E’\;$ das perpendiculares ao eixo $\;HG\;$ tirada por $\;E\;$ e a $\;HF\;$ tirada por $\;F\;$ (esta última por a perpendicularidade é invariante por reflexão e $\;HA \rightarrow HF \;$ e $\; AF \rightarrow FE’ = A’E\;$ e $\overline{AE}=\overline{FE’}.\;$ Claro que $\;GE \rightarrow GE’\;$ e $\overline{GE}=\overline{GE’}.\;$ Quando dobramos o papel, o quadrilátero $\;AEGH\;$ passa a ocupar a posição de $\;FE’GH.\;$
      E ganha realce o triângulo vermelho $\;DHF\;$ que é o que nos interessa estudar: Quando a dimensão $\;\overline{AE}=x\;$ do retângulo varia, como varia a área $\;y\;$ de $\;FDH\;$ ?
    5. Designamos por $\;x\;$ o valor do comprimento variável comum a vários segmentos $\;AE=DF=FE’\;$ que varia quando a posição de $\;E\;$ varia sobre $\;[AB]\;$ e por $\;y\;$ o valor correspondente à área de $\;FDH\;$ que varia com $\;x = DF\;$ e é o gráfico dessa dependência de $\;y\;$ que estudamos: Se designarmos por $\;h\;$ a invariante $\;\overline{AD}\;$ temos por um lado $\; h-dH=HF\;$ e, por outro, $\;HF^2=x^2+DH^2\;$, podemos escrever $\;(h-DH)^2 = x^2+HD^2\; \; \mbox{ou} \;\; h^2 + DH^2 -2h.DH = x^2 + DH^2, \;\;$ de onde decorre que $$DH= \frac{h^2-x^2}{2h}$$ O valor $$\mbox{Área de} \; \;[FDH] = \frac{FD \times DH}{2}$$ correspondente à área $\;y\;$ pode ser expresso $$y = \frac{x \times (h^2- x^2)}{4h}\,\;\mbox{ou}\;\; y= \frac{1}{4h} (-x^3+h^2.x)$$ O gráfico $\;(x,\; f(x))\;$ para o domínio de valores para $\;x\;$ conforme as condições do problema, a saber $\;]0,\; h[\;$
    6. Para determinar o valor de $\;x\;$ correspondente ao máximo dos valores $\;y\;$ consideremos o uso da derivada $$y’(x)= \frac{1}{4h} (-3x^2+h^2)$$ Para $x: \;\;0< x < h\;$, y’(x) anula-se para $ -3x^2+h^2 = 0 \Leftrightarrow x= \displaystyle \frac{1}{\sqrt{3}} h.$
      Ora $$\; x < \frac{\sqrt{3}}{3} h \Rightarrow x^2<\frac{h^2}{3} \Rightarrow -3x^2> -h^2 \Rightarrow -3x^2+h^2 >h^2-h^2 \Rightarrow -3x^2+h^2 >0$$ o que quer dizer que à esquerda de $\;\displaystyle \frac{\sqrt{3}}{3} h\;$ a função $\;y(x)\;$ cresce com $\;x\;$. E, de modo simétrico, $$\; x > \frac{\sqrt{3}}{3} h \Rightarrow x^2 > \frac{h^2}{3} \Rightarrow -3x^2 < -h^2 \Rightarrow -3x^2+h^2 < h^2-h^2 \Rightarrow -3x^2+h^2 < 0$$ e com $\;x\;$ para a direita de $\;\displaystyle \frac{\sqrt{3}}{3} h\;$ a função $\;y(x)\;$ decresce Ou seja, para todos os pontos do domínio $\;]0, \; h[\;$ a área do triângulo vermelho tem valores nunca superiores a $$y\left(\displaystyle \frac{\sqrt{3}}{3} h\right) = \frac{1}{4h} \left(-\left(\frac{\sqrt{3}}{3} h\right)^3+h^2.\frac{\sqrt{3}}{3} h\right)= \frac{\sqrt{3} h^2}{18}$$
    No caso da nossa figura em que $\;h=4\;$, de entre os triângulos $\;FDH, \;$ aquele que tem área máxima de valor aproximado 1,5396 tem o cateto $\;DF = \displaystyle \frac{4\sqrt{3}}{3} \approx 2,3094 $ □


    Sangaku Optimization Problems:
    (All animations written by David Schultz in MAPLE (TM). Source code available upon request: davvu41111@mesacc.edu)
    Tenman Shrine, 1822, Takeda Atsunoshin
    Problem Statement: A rectangular piece of paper is folded so that two opposite corners coincide. If the height of the rectangle is fixed at a given length, what dimensions of the rectangle will give the maximum area of the shaded triangle?
    The Sangaku in Gumma. Gumma Wasan Study Association, 1987.

    17.11.17

    Áreas: Problemas de Optimização (5)

    Problemas Sangaku de Optimização

    Enunciado do problema (adaptado):
    Num determinado setor circular $\;AOB\;$ de raio fixo, $\;r=AO=BO=CO\;$, é construído um círculo menor de raio variável, $\;x=OD\;$, com $\;D \in AO$. À medida que o raio menor aumenta, uma corda tangente ao círculo interno tirada pelo ponto $\;A\;$ determina uma região de área variável, na figura assinalada a vermelho (limitada por segmentos de reta $\;AT,\; OT\;$ e pelo arco $\;\widehat{DT}\;$ da circunferência $\;(O,\; x).\;$
    Qual deve ser o raio $\;x\;$ do círculo interno para maximizar esta área?

    Na figura abaixo apresentam-se inicialmente as etapas da construção que ilustra o enunciado do problema, a saber:

      na figura inicial
    1. dois segmentos $\;AO,\; OB\;$ de comprimento fixo $\,r\;$ e um dado arco circular de extremos $\;A, \;B\;$ parte da circunferência de de centro em $\;O\;$ e a passar por $\;A.\;$ Também se apresenta o ponto $\;D\;$ que pode assumir qualquer posição em $\;[AO].\;$
    2. 16 novembro 2017, Criado com GeoGebra

      na figura seguinte, acrescenta-se
    3. a semicircunferência tracejada de centro em $\;O\;$ e raio $\;OD=x\;$
    4. a que sucede a determinação da
    5. tangente a $\;(O,\;D)\;$ tirada por $\;A\;$ e o respetivo ponto $\;T\;$ de tangência: $\;OT \perp AT.\;$ E o triângulo $\;ATO\;$ retângulo em $\;T\;$ preenchido a vermelho, cuja área pode ser expressa por $\; \displaystyle \frac{\overline{AT} \times \overline{TO}}{2} \;$ ou $$y_1= \frac{1}{2}\times \sqrt{r^2-x^2}\times x$$ que nos dá a variação dos valores das áreas de $\;[ATO]\;$ com a variação da posição de $\;D\,$ ou a variação dos valores dos comprimentos $\;OD$.
    6. e, finalmente,
    7. o setor circular,cor de ouro, limitado pelos segmentos $\;OD, \;OT\;$ e pelo arco circular $\;\widehat{DT}\;$, cuja área é expressa por $$y_2= \frac{1}{2} \times arccos{\frac{x}{r}}\times x^2 $$ e que subtraído ao triângulo $\;\Delta AOT\;$ nos deixa uma figura vermelha limitada pelos segmentos de retas $\;[AD,\;[AT\;$ e pelo arco $\; (\widehat{DT}\;$ cuja área nos é dada por $$y=y_1-y_2= \frac{1}{2}\left( \sqrt{r^2-x^2}\times x - arccos{\frac{x}{r}}\times x^2\right)$$ em função de $\;x, \;$ raio de $\;(O,\;D)\;$ É a maximização desta última que nos ocupa.
    8. Nesta etapa a figura disponível é acrescentada com os gráficos num referencial ortonormado $\;Oxy\;$ em que se apresentam os pontos $\;(x,\;y_1)\;$ e $\;(x,\; y_2)\;$ respetivamente das áreas do triângulo $\;ATO\;$ e do sector circular $\;DTO\;$ em função de $\;OD\;$ e $\;(x, \;y)\;$ da área da figura $\;ADT\;$ obtida como resto da subtração do sector circular $\;ODT\;$ ao triângulo $\;AOT\;$ em função de $\;OD.\;$ O traçado das curvas correspondentes às três funções sugere-nos que a área máxima de $\;ADT\;$ é atingida para o valor do raio $\;x\;$ a que corresponde áreas iguais $\;y(x)= y_2(x)\;$ que é o mesmo que dizer quando $\;y_1(x) - y_2(x)=y_2(x) \mbox{ou quando} y_1(x)=2 y_2(x)= 2y(x)$
    Notas finais:
    $$ \frac{1}{2}\left(\sqrt{r^2-x^2}\times x - arccos{\frac{x}{r}}\times x^2 \right)^{’}_{x} =\frac{1}{2}.\frac{r^2-x^2}{\sqrt{r^2-x^2}}-x . arccos{\frac{x}{r}} = \frac{1}{2} \sqrt{r^2-x^2} -x . arccos{\frac{x}{r}}$$ E $$\frac{1}{2} \sqrt{r^2-x^2} -x . arccos{\frac{x}{r}}=0 \Leftrightarrow \sqrt{r^2-x^2}= 2x.arccos{\frac{x}{r}} $$ que confirma a conjectura acima porque obriga a que $$x\sqrt{r^2-x^2}= 2x^2.arccos{\frac{x}{r}}$$ ou seja, a área do triângulo $\;[ATO] \;$ é dupla da área do sector circular $\;(DTO]\;$ ou que as figuras $\;[ATD(\;$ e $\;(DTO]\;$ são equivalentes quando a área de $\;[ATD(\;$ atinge o seu máximo.

    Para o raio $\;AO=4\;$ as soluções da equação $$x\sqrt{r^2-x^2}= 2x^2.arccos{\frac{x}{r}}$$ são $\;x \approx 1,57694 \vee x=4.$ Claro que para os valores $\;0,\;4\;$ de $\;x,\;$ os dois membros da equação anulam-se e não corresponde ao raio maximizante da área em estudo. □


    Sangaku Optimization Problems:
    (All animations written by David Schultz in MAPLE (TM). Source code available upon request: davvu41111@mesacc.edu)
    Tenman Shrine, 1822, Takeda Atsunoshin
    Problem Statement: In a given sector of a circle of fixed radius, R, a smaller circle of varying radius, r, is constructed. As the smaller radius increases, a chord tangent to the inner circle with left-endpoint fixed cuts off a region of varying area. What should the radius of the inner circle be in order to maximize this area?
    Sacred Mathematics: Japanese Temple Geometry. Fukagawa, H. & Rothman, T. 2008.

    7.11.17

    Notas sobre o problema do quadrado dobrado

    Problemas Sangaku de Optimização

    Nesta entrada, embora todas as construções sejam feitas com régua e compasso, recorremos a operações algébricas, conceitos de função, derivada, etc.

    Nas condições já descritas em entrada anterior que vale a pena rever por ter sio ampliada, dobrámos um quadrado de papel de cantos $\;A,\;B, \;C, \;D\;$
    mantendo fixos os cantos $\;B, \;C \;$ e levando $\;A\;$ a sobrepor-se a um ponto $\;A'\;$ de $\;BC.\;$
    Escolhemos, para isso, um ponto $\;P \in [AB]\;$ para extremo de uma linha de dobra mais próximo de $\;B\;$ que de $\;A.\;$ Sabemos que
    — para cada ponto $\;P\;$ há um só $ \;A' \in [BC] \;$ tal que $\;\overline{PA}= \overline{PA'},\;$
    — $\;AD \longrightarrow A'D' \;$ sendo $\;A'D' \perp PA' \wedge A'D'= AD,\;$
    o outro ponto $\;E \in [CD]\;\;$ extremo da linha de dobra está na perpendicular a $\;A'D'\;$ tirada por $\;D'\;$ e é tal que $\;\overline{ED}=\overline{ED'},\;$
    — os trapézios $\;APED\;$ e $\;A'PED'\;$ são geometricamente iguais, ou a figura $\;APA'D'ED\;$ admite a linha de dobra $\;PE\;$ como eixo de simetria (reflexão)
    — são semelhantes os triângulos retângulos $\;PBA', \;A'CF, \;FD'E.\;$ já que são complementares entre si $\;B\hat{A'}P\;$ e $\;F\hat{A'}C\;$ e, cada um deles, ser respetivamente complementar com $\;A'\hat{P}B\;$ e $\;C\hat{F}A'\;$ e este último ser verticalmente oposto a $\;E\hat{F}D',$ obviamente complementar de $\;D'\hat{E}F.$

    Apresentamos, nesta entrada, relações entre comprimentos de segmentos (do quadrado, dos trapézios, dos triângulos, etc) que não dependam da posição de $\;P\;$ e nos foram sendo sugeridas por leituras a respeito de um problema de optimização Sangaku.....

    As quatro etapas da construção que ilustram as diversas relações podem ser seguidas na figura dinâmica abaixo.

    © geometrias, 23 outubro 2017, Criado com GeoGebra

    1. Começamos por apresentar o quadrado $\;ABCD\;$ e
    2. a castanho, o trapézio $\;A'DEP\;$, imagem de $\;ADEP\;$ por uma reflexão de eixo $\;EP.\;$
    3. A circunferência de centro em $\;A'\;$ e a passar por $\;D'\;$ (de raio $\;A'D'=AB\;$) passa pelo ponto $\;T\;$ de tangência de $\;(A',\; AB)\;$ com $\;AD\;$ ($\;A'T \perp AD \; \wedge A'T = AB\;$ ) a que, ao dobrar pela reflexão de eixo $\;EP, \;$ corresponde o ponto $\;T'\;$ de tangência de $\;A'D'\;$ com $\;(A, \;AB)\;$ ( a reflexão de eixo $\;EP\;$ que transforma $\;(A, \;AB)\;$ em $\;(A', \;AB)\;$ mantém a tangência)
      Ficou assim provado que $\;T'\;$ é um ponto de tangência de $\;A'D'\;$ com $\;(A, \;AB).\;$
      1. Em consequência, e por $\;B\;$ e $\;D\;$ serem pontos de tangência de $\;(A, \;AB)\;$ respectivamente com $\;BA'\;$ e com $\;DF\;$ são iguais os segmentos dessas tangentes, a saber: $\;A'T'=A'B\;$ e $\;FT'=FD\;$.
      2. E podemos agora provar que o perímetro do triângulo $\;A'CF\; $ $$\;A'C+A'F+FC=A'C+\underbrace{A'T'+T'F}+FC= \underbrace{CA'+A'B} + \underbrace{DF+FC}=BC+CD$$ é igual a metade do perímetro do quadrado $\;ABCD.\;$
      3. Do mesmo modo, como $\;CA'+A'F+FC=BC+A'D'=\underbrace{BA'+A'C}+\underbrace{A'F+FD'}=\underbrace{CA'+A'F}+ \underbrace{A'B+FD'}$ concluímos que $$FC=A'B+FD'$$
      4. Como $$\Delta A'CF'\; \sim \Delta FD'E \Longrightarrow \frac{A’F}{EF}= \frac{A’C}{D’E}=\frac{CF}{D’F}$$ $$\Delta PBA'\; \sim \Delta FD'E \Longrightarrow \frac{BA’}{FD’}=\frac{PB}{ED’}=\frac{PA’}{EF}$$ $$\Delta A'CF'\; \sim \Delta PBA' \Longrightarrow \frac{A’F}{A'P}= \frac{A’C}{PB}=\frac{CF}{A'B}$$ e $$\;FC=A'B+FD' \Leftrightarrow \frac{FC}{FD'} = \frac{FD'}{FD'}+\frac{A'B}{FD'}= 1+\frac{A'B}{FD'}, \;\;\;\;\overline{F'D} \neq 0\;$$ ou seja, a razão da semelhança que transforma $\;\Delta FD'E\;$ em $\;\Delta A'CF'\;$ excede em 1 o valor da semelhança que transforma $\;\Delta FD'E\;$ em $\;\Delta PBA'\;$ e é, por isso, sendo verdade que $\;FC=A'B+FD'\;$ também é verdade que $\;A'C=PB+D'E\;$ e $\;A'F=PA'+EF.\;$ $$CF+FA'+A'C = \underbrace{A'B+FD'} + \underbrace{PB+D'E} + \underbrace{PA'+EF}= \underbrace{BA'+A'P+PB} + \underbrace{FD'+D'E+EF}$$ e concluimos que o perímetro de $\;\Delta A'CF'\;$ é igual à soma dos perímetros de $\;\Delta PBA'\;$ e $\;\Delta FD'E.\;$
    4. Mostra-se nesta etapa o círculo inscrito de centro em $\;I\;$ e raio $\;r=IJ=IK=IL\;$ no triângulo $\;A’CF\;$ retângulo em $\;C\;$ e os pontos de tangência: $\;J\;$ do lado tangente $\;A’C,\;\; \;K \;$ do lado tangente $\;CF,\;\;\;L\;$ do lado tangente $\;A’F.\;$ Cada um destes pontos de tangência divide o lado respetivo em dois segmentos, a respeito dos quais sabemos que $$\;A’L=A’J,\; \;\;FL=FK, \; \;CJ=CK=JI=KI=LI.$$
      Ainda nos interessam alguns resultados que relacionam o inraio $\;r\;$ do triângulo $\;A’CF\;$ com os seus lados e dos outros triângulos semelhantes a este.
        Podemos também provar que
      1. o inraio $\;r=IJ=IK=IL= JC=CK\;$ tem comprimento igual ao segmento $\;[FD'].\;$
        Como $\;CF+FA'+A'C = CK+KF+FL+LA'+A'J+JC =r+FL+FL+LA'+LA'+r =\;$ $=2r+2FL+2LA'=2(r+FL+LA')\;$ e $\;A'D' = A'L+LF+FD'\;$ e, em consequência , $\;2A'D'= 2A'L + 2FL + 2FD' =2(FD'+FL+LA').$
        Ora, por ser $\;2A'D'\;$ o semiperímetro do quadrado $\;ABCD\;$ como o é $\;CA'+A'F+FC\;$ (cf. 3.2), podemos escrever $\; 2(r+FL+LA')=2(FD'+FL+LA')\;$ o que equivale a $$\;r=FD'\;$$
      2. De $\;BA'+ A'J+JC = BC =A'D'=A'L+LF+FD' \; \wedge A'J=A'L$ retira-se $$\;BA'= A'L= KF\;$$
      3. De $\; FC=FK+KC,\;$ tiramos $\;FK=FC-r\;$ e de $\; A’C=A’J+JC,\;$ tiramos $\;A’J =A’C-r\;$ e, em consequência, $\;FA’=FJ+JA’=FC-r +A’C-r =FC+A’C-2r\;$ e, concluindo, $\;2r=FC+CA’-A’F\;$ que nos dá o valor do inraio $\;r\;$ em função dos lados do triângulo $\;A’CF\;$ em que se inscreve o incírculo: $$\;r= \frac{FC+CA’-A’F}{2}\;$$ metade da semi-soma dos catetos subtraída da hipotenusa.
      4. Se tomarmos o ângulo $\;A'\hat{A}B =D'\hat{D}F =\alpha\;$ e para unidade de comprimento o lado do quadrado $\;AB=1,\;$ $\;tg(\alpha)=BA'=t\;$ . Temos $\;A'C=1-t\;$ e $$\frac{BA'}{A'C}=\frac{t}{1-t}.$$Quando tomamos $\;D\hat{A}F=\displaystyle \pi /4 -\alpha\;$ ficamos com $\;tg(\displaystyle \pi /4 -\alpha) = \displaystyle \frac{1-t}{1+t} \;$ e $\;CF=1-FD=\displaystyle \frac{2t}{1+t}\;$ e $\;\displaystyle \frac{CF}{FD}=\frac{2t}{1-t}\;$

    1. Sangaku Optimization Problems:
      (All animations written by David Schultz in MAPLE (TM). Source code available upon request: davvu41111@mesacc.edu)
      Japanese Paper Folding Problem
      Problem Statement: When as square piece of paper of fixed side length is folded as shown in the figure, a circle is formed in the upper-left-hand corner which is tangent at three points to the paper. First show the red segment and the red radius are equivalent for all folds. Then determine where the paper should be folded in order to maximize the area of the circle.
      Adapted from: Japanese Temple Geometry Problems. Fukagawa, H. & Pedoe, D. The Charles Babbage Research Center, Winnipeg, 1989.
    2. A collection of 30 Sangaku Problems, de J. Marshall Unger, Ohhio State University.
    3. http://geometrias.eu/deposito/ORirABCO2a.html
      http://geometrias.blogspot.pt/2014/10/triangulos-retangulos-altura-e-inraios.html
    4. Robert Geretschläger. Folding Questions - A paper about Problems about Paper. WFNMC-6, Riga, Latvia: 2010
    5. Hiroshi Okumura. A Folded Square Sangaku Problem
    6. Hiroshi Okumura. A Note on HAGA's Theorems in Paper Folding. in Forum Geometricorum.Volume 14 (2014) 241-242
    7. Hidetoshi Fukagawa. Japanese Temple Geometry Problems. 1989.